第三百零六章 高斯的宝藏(下)(8.4K)(3 / 5)

年小巷,9月晴朗,法拉第更新的第七章,发电机继续推向人类发展的下一行......”

“9月15日,料理完米娜葬礼,心情悲痛万分。”

“沉寂七日过后,窗外忽然传来特雷泽的朗诵声,【肥鱼先生扶起年轻的牛顿爵士,对他说,牛顿先生,车已经备好了,不要停下来啊】!”

“先贤之言如同黑夜中的亮光,令我重新拥有了向前看的勇气。”

“恰好狄利克雷到访,偶见他手中维尔茨堡大学修订的‘数学未解之谜’,玩心渐起。”

“于是随手写下几个小纸片,折叠成团,找来特雷泽随意抽取其一,上面的题目是‘奇完全数是否存在’。”

“后花费四小时三十五分钟写下此稿,提上裤子,评价......一般货色。”

徐云:

“.......”

随后他深吸一口气,翻到了下一页。

刚一翻页,一个硕大明显的字便出现在了他面前:

解。

解:

“众所周知。”

“正整数n是一个偶完全数当且仅当n=2m?1(2m?1)n=2^{m-1}(2^{m}-1)n=2m?1(2m?1)其中 m , 2 m?1m,2^{m}-1m,2^m?1 都是素数。”

“设p是一个素数, a是一个正整数,那么有:”

“σ(pa)=1+p+p2+...+p^a={p^(a+1)?1}/p-1。”

“设正整数n有素因子分解n=p^(a1/1)p^(a2/2)p^(a3/3).....p^(as/s)。”

“由于因子和函数σ是乘性函数,那么:”

“σ(n)={p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}......·{p^(as+s/1)-1}/{ps-1}=s∏j1·{p^(aj+j/1)-1}/{pj-1}。(S应该在∏的上面j=1在下面,不过不支持.....)”

“又因为其中p是奇素数, a是正整数, s≥1。”

“所以有{p^(a1+1/1)-1}/{p1-1}<{p^(a1+1/1)}/{p1-1}=(p1)/(p1-1)·p^(a1-1/1)≠2p^(a1-1/1)≠2p^(a1-1/1)。”

“{p^(a2+2/1)-1}/{p2-1}<{p^(a2+1/1)}/{p2-1}=(p2)/(p2-1)·p^(a2-2/1)≠2p^(a2-2/1)≠2p^(a2-2/1)”

.......

“{p^(as+s/1)-1}/{ps-1}<{p^(as+1/1)}/{ps-1}=(ps)/(ps-1)·p^(as-s/1)≠2p^(as-s/1)≠2p^(as-s/1)”

“在平方数中,它们连续相加之和,乘6,有的被n乘n加1整除,等于2n加1,即2n减1是质数,2n加1是质数,故它是一对孪生素数。”

“在2次幂,5次幂幂连续相加中,有2乘3乘5乘7……的形式,在数学计算中,反之,是计算连续相加之和,与1次幂,2次幂相同,写出它计算的形式,即偶数加1与减1,可写为质数与合数.....”

“所以σ(n)≠2{p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}......·{p^(as+s/1)-1}/{ps-1}。”

“即σ(n)≠2n,其中n为大于1的奇数,而σ(1)=1,σ(1)=1。”

“所以......”

“不存在奇完全数。”(其实最后一个步骤是过不来的,取了个巧,勿要深究,灵感参考自10.3969/j.issn.1009-4822.2009.02.003)

看着落笔处的最后一句话。

徐云沉默良久。

心中的千言万语,最终化作了一声长叹。

这就是高斯啊......

一个站在了古往今来数学史最巅峰的男人,一个征服疆域比某个小胡子还要广阔的德意志人。

一卷看似随笔般的手稿,便让徐云看的如痴如醉......

忽然。

徐云的心中又想起了高斯此前对他说的那句话:

“我不创造奇迹,因为我本就是一个奇迹。”

这位个子不高的小老头,凭着一身的才华聪慧,硬生生的成为了数学史上的最高峰之一。

哪怕在徐云穿越的后世,也依旧无人可望